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ABSTRACT

- The work pursued under this grant dealt with artificial neural networks. and other .dis- -
crete/continuous models.- New bounds were obtained for sample complexity for-identification
of static and dynamic concept classes defined by static and recurrent networks. Structural and
system-theoretic properties were characterized, leading to effective tests for identifiability and
other properties. Related models of hybrid systems were also studied; an equivalence prob-
lem for PL systems was shown to be decidable in polynomial time, and a general Maximum
Principle was established for hybrid systems.
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1 Introduction

The work pursued under this grant was centered on artificial neural networks and other dis-
crete/continuous models for computation and systems.

For neural networks, we focused on foundational theoretical results, in the light of which
algorithms used in applications (such as adaptive control, pattern recognition, of fault detection)
can be compared and evaluated. For instance, our work on Vapnik-Chervonenkis dimension
allows a precise quantification of the amount of data needed in order to realiably generalize
from samples, in a learning or adaptive control application, and our work on identifiability
permits an understanding of multiple minima in cost functions associated to numerical fitting.
We also continued our work on system anad control theoretic questions associated to systems
obtained by combining “saturation” sigmoidal devices which interconnect to other such devices
via excitatory and inhibitory links. Towards the latter part of the grant period, we turned our
attention to “spiking” neuronal models and their signal processing capabilities, as well as to
the limitations imposed by noise on the computational capabilities of networks.

We also studied other hybrid models of systems and computation as part of this project.
This area, broadly speaking, deals toth the interface between continuous and discrete devices
(such as digital computers) used in symbolic processing. In this context, we continued the
development of tools for piecewise-linear analysis, and we obtained a far-reaching generalization
of the Maximum Principle of optimal control which applies to “hybrid” dynamics.

In this report, we present some of the accomplishments of the project, selected to highlight
the variety of projects pursued. Complete details on this and other work done under this grant
can be found in the following Web pages: -

| http://www.math.rutgers.edu/ sontag l :

http://www.math.rutgers.edu/” su‘ssm'ann—l ’

2 Recurrent Neural Networks

It is said that saturation is the most commonly encountered nonlinearity in control engineering,
so the development of techniques for the modeling and control of such systems is obviously of
great interest. Saturations might occur in controls (discussed later) or in the rates of change of
state variables. For linear systems, one is then led to the study of what are sometimes called
recurrent neural networks, i.e. systems of the form

z = o(Ax + Bu)

or their corresponding discrete-time versions, where A and B are as usual in linear systems
theory, combined with an output map y = Cz, typically a coordinate projection. (If we had
o = the identity function, we would be studying continuous-time time-invariant linear systems,
but typically o is a bounded map whose translates and dilations — just as with wavelet generators
— provide dense sets in appropriate function spaces, for instance tanh.) A different motivation
for the study of these systems is that they arise as a very stylized model of dynamically evolving
biological networks (one interprets the vector equations for = as representing the evolution of
an ensemble of n “neurons,” where each coordinate z; of z is a real-valued variable which
represents the internal state of the ith neuron, and each coordinate u;,i = 1,...,m of u is




an external input signal; the coefficients A;j, Bi; denote the weights, intensities, or “synaptic

strengths,” of the various connections, and the coordinates of y(t) = Cz(t) represent the output
of p probes, or measurement devices, each of which averages the activation values of several
neurons). Sometimes one considers small variants of the model shown above, including for
instance a linear term outside of the saturation, used to insure stability, as in the well-know
model proposed by Hopfield for associative memory storage and retrieval.

Among many non-control applications, recurrent nets have been employed in the design of
control laws for robotic manipulators, speech recognition, speaker identification, formal lan-
guage inference, and sequence extrapolation for time series prediction. In control recurrent
nets have been proposed as generic identification models or as prototype dynamic controllers,
though other architectures are also used. In addition, theoretical results about neural networks
established their universality as models for systems approximation as well as analog computing
devices (we reported on our work along these lines in a previous grant period; see an article
describing this work in Science, April 28, 1995). Special purpose chips have been built to imple-
ment recurrent nets directly in hardware; for instance, Hitachi’s Wafer Scale Integration chips
implement Hopfield nets with over 500 neurons and 30,000 synaptic connections. Electrical
circuit implementations of recurrent nets, employing resistively connected networks of nonlin-
ear amplifiers, with the resistor characteristics used to reflect the desired weights, have been
suggested as analog computers, in particular for solving constrained optimization problems and
for implementing content-addressable memories.

The PI started a few years ago a program of study directed to questions of controllability,
stabilization, and (when outputs y = Cz are considered) observability and parameter esti-
mation for such systems. Surprisingly, explicit necessary and sufficient tests: are available for
observability and parameter identification, the nonlinear character (and unwersahty) properties
of the class of systems notwithstanding. We cannot provide a reasonable discussion within the
constraints of this proposal, so the survey paper [17] (available in preprint form from the PI’s
web site) should be consulted for a recent exposition of our work in the above areas; we will .
limit ourselves here to describing just oné area.

The paper [4] showed that the system & = o(Az 4 Bu) is completely controllable provided
that (1) o belongs to a certain class of nonlinearities characterized among other properties by
exponential asymptotics (this class includes tanh, the typical saturation nonlinearity studied in
neural networks, but it excludes arctan, which qualitatively shares boundedness, monotonicity,
and concavity properties with tanh), and (2) that B € By, the n x m matrices whose rows
are nonzero and distinct up to signs. An exposition can be also found in E. Sontag’s textbook
Mathematical Control Theory (second edition, Springer-Verlag, 1998). This left open a large
number of questions, all of which are of great interest, foremost among them: what can be
said if the hypothesis that B € B, , is dropped? In general, obtaining necessary and sufficient
conditions for controllability when B ¢ B, ,, appears to be a very difficult subject. In [9], we
showed that B € By m is necessary for a stronger form of complete controllability (local-local),
but it is easy to see that this condition is not necessary for plain controllability. We did produce
in that paper a complete solution for two-dimensional single-input (n = 2, m = 1) systems;
let us summarize those results. When B = (b1,b2) & By,1, we may assume after a rescaling
of inputs, changes of variables £ — —z or y — —y, and/or exchanges of variables, that one of
these cases holds: B = (0,0), B = (0,1), or B = (1,1)’, and in the first case we don’t have
controllability. In the remaining two cases, under a further feedback transformation of the type
u — ax+by+u/, where v is a new control, one may transform a recurrent net, while preserving
controllability properties, into one of the two canonical forms: & = o(az + by), § = o(u), which




are shown to be controllable if and only if |a| < |b] and b # 0, or & = o(az +u), ¥ = o(by + u),
which are controllable if and only if @ # b. Obtaining a condition without dimension constraints
is the final goal, but even characterizing the three-dimensional case seems nontrivial. An easier
question might be to determine whether the set of pairs (A, B) which result in controllable
systems (for o = tanh, let us say) is a semialgebraic set, as in the two-dimensional case. In
addition, the case when o does not satisfy the axioms in [4] represents an even more challenging
task. These questions remain open for further research.

3 Systems with Input Saturations

One of the interesting, and somewhat unexpected, places in which neural network (feedforward
sigmoidal) models have appeared is in the design of global stabilizing feedback for systems with
input constraints. Often control systems are designed based on linear systems theory, which
ignores amplitude limitations on inputs. However, energy, mechanical, or safety requirements
often impose limits on control authority, which may result in instabilities or in undesired in-
variant sets (limit cycles, parasitic equilibria, etc). The classical approach to dealing with this
problem has been to attempt to prevent saturation, forcing the regulated system to say within
a region of linear behavior. Most “anti-windup” methods fall in this category. On the other
hand, it is possible to approach the problem differently, and view the object to be controlled
as a nonlinear system of the type & = Az + Bo(u) where A and B are as usual in linear
control theory and o is a saturation such as tanh or the standard clipping saturation, apphed
coordinatewise. One line of work by the Pls deals with the study of such systems. :

" Fuller showed in the early 1970s t‘1a‘r it is in general 1mposs1ble to globally stablhze the.
orlgln of these sys‘cems by means of linear feedback u=Fz even if the system:is open-loop
' ~ globally controllable to the origin. This suggests the obvious. questlon of searchlng for nonlinear
- feedback laws u=k(z) that achieve such stabilization, and in particular for" nicely behaved -
- and easﬂy 1mplementable controllers (in contrast to optlmal control techmques, ‘which result -
in highly irregular feedback). In a well-known 1990 paper, the PIs we proved that smooth
stabilization is always possible. Motivated by our paper, soon thereafter Teel made the ground-
breaking discovery that single-input multiple integrators can be stabilized by feedbacks which
are themselves compositions of linear functions and iterated saturations (“nested saturation”
technique). This, in turn, made us redirect our efforts to the use of Teel’s technique as well as
a variant (parallel saturations, which is a “neural network” architecture) in the general case of
open-loop asymptotically controllable linear systems with no exponential instabilities (the rank
of [A\] — A, B] is n for all X in the imaginary axis, and A has no eigenvalues with positive real
part), obtaining general results, which appeared in various improved versions in the periods
covered by the previous grant. In this grant period, we continued this study, producing a,
discrete-time version as well ([2]).

4 Learning Theory and Identification

The study of neural nets, and in particular of their “learning” (adaptive control, identification)
capabilities, motivated us to initiate a program of research in computational learning theory,
an active area of theoretical computer science. In particular, we have focused on the estimation
of learning-theoretic (VC, Pollard) dimensions which are used as measures of interpolation and
extrapolation (“generalization”) and pattern classification power; the many publications in our




web site can be consulted for details on many projects. Our contributions in this area have
been recognized by that community; for instance we have given two plenaries at NIPS, the pre-
eminent and highly selective conference in the area, and were asked to deliver a short course
on neural network learning at a Newton Institute summer program (lectures described in [18]).

One recent direction of study has been the generalization of dimension estimates for linear
systems obtained in a previous grant period (IEEE Trans. Inform. Theory 42 (1996): 1479-
1487) to discrete ([7]) and continuous ([8]) time nonlinear systems, and especially the study of
dimension estimates, and their implications for sample complexity of worst case identification
for linear systems subject to bandwidth-restricted inputs ([19], [15]). That work takes a com-
putational learning theory approach to a problem of linear systems identification. It is assumed
there that input signals have only a finite number k& of frequency components, and systems to
be identified have dimension no greater than n. The main result established that the sample
complexity needed for identification scales polynomially with n and logarithmically with k. Let
us provide some details of this particular work.

4.1 Learning and Linear Systems Identification

The problem of systems identification may be seen as an instance of the general question of
“learning” an unknown function. Techniques from Computational Learning Theory (CLT) can
be applied and our previous papers (previous grant period) had already provided results appli-
cable to the identification of discrete-time linear systems on finite-window data. For continuous-
time systems, the situation is complicated by the fact that, even for finite-length inputs, learn-
ability is impossible when formulated in the CLT framework, as can be seen by applying the
discrete-time results (through sampling). Thus, in our work, we supposed that all inputs to be
used, in the learning as well as in validation stages, belong to the linear span of a fixed number
k of sinusoidal basic functions. This band-limiting assumption allowed us to obtain a precise
result: the sample complexity needed for identification scales polynomially. on an upper.bound-
on the systems being identified, and logarithmically with k. This provides a tight analogy to
the discrete results previously obtained, in which k appeared as the length of the discrete-time
window employed.

In the context of learning we discuss continuous-time linear control systems:
z = Az + Bu, z(0) = z°, y = Cuz, (1)
where A, B, and C are n x n, n X m, and p X n real matrices, and the time interval is [0,1]. We

study sign-observations

sign y(1) = (sign y1(1),...,sign yp(l))T,

where sign z = 0, if 2 < 0, sign z = 1, if 2 > 0 and T stands for the transpose. For scalar
observations this is a classification problem; each output is classified either 0 or 1 and the
VC-dimension can be used to study the learning complexity of the problem. (When p > 1, a
generalization of the VC-dimension or a loss function is needed.)

We consider controls u = (uq, ..., un) such that
u = Guw,

where G is a m X k matrix that parametrizes the control. The set of basis input functions
Q = {wy,...,wx} is fixed. The bounds for the VC-dimension or other complexity dimensions
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will depend on the properties of the set Q. For scalar inputs (i.e., m = 1) the VC-dimension
associated to the mapping from inputs G to scalar sign-observations is bounded by &, which in
fact can be very large in applications. This bound is tight; we give an example of a function class
(2 for which the associated VC-dimension is indeed k. By considering band-limited controls the
bound can be improved. In this work we consider the following set of basis input functions

Q= {wl, e W S wi,...,wy linearly independent and
wj = thie®itsin(Bjt) or w; = t%et cos(B;t)

with £; € N,a;,5; €R,j = 1k}

and let
lnax = max{fy,..., ¢} (2)

Order the set of basis input functions © and denote w = (wy,...,w;)T. Let
Xo ={Gw:[0,1] - R™; G € R™},

and for each linear system ¥ = (4, B, C,z°) of dimension n define the mapping Py, : Xg — RP
by ®5(Gw) = y(1), where y(1) is the solution of ¥ with control u = Gw. Similarly we define
the mapping for sign-observations,

Sy : Xa — {0,1}? Guw + sign (P5(Gw)).
The class of above mappings is the sign system concept class
C,’n,p = {Szf;..,E - linear system of diménsion n}

"f’;Theorem [Sample complemty for concept learmng] For sign systems concept ‘class: Cm 1. with
scalar observations, i.e., p = 1, the sample complex1ty s(e 8) for identifiers that agree with the
observed sample can be bounded as

8 < e (Y0 G g (56 1, (2Y)

VC (Cm,1) < 2(2mn” + 4n + 1) logy [8e(8mn?k(n + fmax) + 1) (2nk + 2(1 + 2k)™)]

where

and £, is given by (2).

In terms of n (the dimension of the state space) and k (the band-width) the upper bound
for the VC-dimension is of the form O(n3logy(nk)). We provided also VC-dimension lower
bound, which is, in terms of the band-width, of the form O(log(k)). In particular, in a typical
setting of fairly small system dimension n and large band-width k, the logk bound is a clear
improvement over the linear bound given by elementary analysis.

In our work, we illustrated how the system (1) with z(0) = 0 can be parametrized by
n(m + 1) parameters. In the following definition we take the final time to be 7 > 1 in order to
show the effect of the time interval in the learning complexity:

Let A € R™M™*1) be the system parameters as above with Ml = max;<icpimen N < 1
and let F(A\,u) = y(7) be the solution of (1) with system parameters A\ and control v =




(U1, um) EU = {u=(u1,...,um); Jo ui(t)dt < M, i=1,...,m}. The class with bounded
controls is defined as
Fp = {F(\ U = B; [\l < 11

Theorem[Sample complexity for proper agnostic learning]. Let k > 0, then the class Fp is
properly agnostically learnable from

1 1 1
0 ('63 ( fat (1/4—n)e(.7'-B) log2 p + log S))
samples, where
m + 1)nlog, | RimrtekM |
fat (1/4-x)e(FB) < min ( nlogs [ (1/4=r)e J
2(m + )n1og, (Se(nmkd(n + fmax) + 1)(2nk + 2(2k + 1)),

together with £max given by (2) and (2), and M a constant satisfying
T
/ lua(r — £)]dt < kM
0

for all i = 1,...,m. In above, |z]| stands for the integer part of z.

Let us discuss briefly the techniques used. When the basis input functions wy, . .., wy, satisfy
certain rationality condition associated to the control system (we split the rational function into
pieces without poles) we show that the sign of the final state can by computed by a Boolean

formula evaluating polynomial equalities and inequalities. Then the complexity -bound can. = -

be obtained by counting arguments and using a result by Goldberg and Jerrum (1995). We - -

prove lower bounds for the VC-dimension with scalar sign-observations. In comparison.to the" - -

upper bound, the lower bound is more general; we just need to assume that the basis input

. ‘functions are continuous and'indepe.ndent.ﬁ'Th‘e bound is proved by using dual VC-dimension . . .-

and axis shattering introduced in’ our previous work. The bounds on the fat-shattering dimen-
sion associated with proper agnostic learning are obtained with a very simple technique. The
paper contains also pseudo-dimension bounds with respect to loss functions that preserve the
rationality structure of the output.

5 Piecewise-Linear (“Hybrid”) Systems

Artificial neural networks are sometimes proposed as a framework in which to integrate symbolic
and numeric computation (a point of view emphasized in and an alternative source of models
for nonlinear control and identification. A different but parallel avenue to some of the same
conceptual issues is provided by the area now known as “hybrid systems” theory. Hybrid
systems theory has recently become the focus of increased research, as evidenced for instance
by the many conferences and workshops in the area. The PI is recognized as having originated
one of the first approaches to hybrid systems analysis, the theory of discrete-time piecewise
linear systems (PLS) introduced in the early 1980s (IEEE Trans. Autom. Control 26(1981):
346-358.) Recently, several teams have initiated other research efforts on PLS. For instance,
Morari and his group at the ETH showed recently that the general class of hybrid “Mixed Logical
Dynamical (MLD)” systems is in a precise sense equivalent to that of PLS as introduced by
the PI, and based on this equivalence, and using tools from piecewise affine systems, studied
basic system-theoretic properties and suggested numerical tests based on mixed-integer linear
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programming for checking controllability and observability. Recently, we were able to prove the
polynomial-time solvability of the state equivalence problem, which was a long-standing open
question, see [11].

Among the most basic questions which can be asked about any class of systems are those
regarding equivalence, such as: given two systems, do they represent the same dynamics under
a change of variables? As a preliminary step in answering such a question, one must determine
if the state spaces of both systems are isomorphic in an appropriate sense. That is, one needs
to know if an invertible change of variables is at all possible. Only later can one ask if the
equations are the same. For classical, finite dimensional linear systems, this question is trivial,
since only dimensions must match. For finite automata, similarly, the question is also trivial,
because the cardinality of the state set is the only property that determines the existence of
a relabeling of variables. For other classes of systems, however, the question is not as trivial,
and single numbers such as dimensions or cardinalities may not suffice to settle the equivalence
problem in the respective category. Given that the class of behaviors that can be represented
by PLS is extremely large, it should come as no surprise that many of the basic verification and
design objectives are NP-hard or even undecidable, as we have remarked in various publications.
In our orignal work (Pacific J. Math., 98(1982): 183-201), we provided a characterization of the
Grothendieck group of the category, as well as a generalization of the Euler characteristic for
polyhedra (and certain theorems for Euler characteristics become trivial when interpreted in
these terms). Moreover, we proved existence of an algorithm for deciding if two PL sets (given
in terms of formulas in L) are isomorphic, via results on decidability of word problems and

.. .results of Eilenberg and Schiitzenberger on finitely generated commutative monoids. Thus the

. -isomorphism problem is one problem that is decidable. However, the algorithm that results
. from that approach has exponential time complexity. Obviously, having a polynomial time
.. algorithm should have a major impact on future studies of PL systems. Lo :

5.1 Some more details < o a0l

In order to sketch the basic definitions for PL algebra and PL systems, it is convenient to
introduce the first order theory of the real numbers with addition and order. That is, we take
the first-order language L consisting of constants r and unary functions symbols r(-), for each
real number r (the latter corresponding to “multiplication by the constant r”), as well as binary
function symbol + and relation symbols > and =. A basic fact is that a quantifier elimination
theorem holds: every set defined by a formula in L is a PL set. That is to say, for any formula
®(z) with n free variables z = x1,...,2p, the set {z|®(x)} is a PL set. (Of course, we can
enlarge the language by adding symbols for sets and maps already known to be PL.) This fact
is very simple to establish and it provides a very convenient tool for establishing the basic
theoretical properties of PL systems. Moreover, the proofs of these facts are constructive, in
that the actual quantifier algorithm could be in principle used to compute feedback laws and the
like. Another constructively-proved fact from our 1982 paper is the following “global implicit
function theorem”: Assume that ¢ : X X Y — R" is a PL map, and assume that for each z
the equation ¢(x,y) = 0 can be solved for y. Then there is a PL map 7 : X — Y so that
¢(z, m(x)) = 0 for all z. (Equivalently: for any PL subset R C X x Y with onto projection into
X, there is a PL map 7 : X — Y (a “section”) so that (z,$(z)) € R for all z € X.) This fact
is central to the existence of feedback controllers.

A PL isomorphism is nothing else than an operation of the following type: make a finite
number of cuts along a set of lines (or segments), apply an affine (linear plus translation)




transformation to each piece (not dropping any lower-dimensional pieces), and finally paste
it all together. As an example, let us take the interior of the triangle in R? obtained as
oc {(0,0),(1,1),(2,0)}, where we are using “oc” to indicate the interior of the convex hull of
the corresponding points. (We can also define this set, of course, as the intersection of the
three hyperplanes o > 0, z; — 72 > 0, and z1 + z2 < 2.) We now show that this triangle is
PL isomorphic to the interior of the open square with vertices (0,0), (1,1), (0,1), and (1,0).
First we cut along the segment S; = oc{(1,0),(1,1)}, obtaining the union of S1, Sa, and S,
where S = 0c{(0,0), (1,0),(1,1)} and S3 = oc{(1,1),(1,0),(2,0)}. Next, we apply the affine

transformation
Te = 01 o 0
“\1 1 1

to change S3 into S§ = oc{(1,1),(0,0),(0,1)}. Finally, we apply the affine transformation

re = (5 1) (o)

to change S into the missing diagonal S] = oc{(0,0),(1,1)}, and we glue it all back. See
S

SN\ M/%

: 'Figure_ 1: Example: triangle.is PL _iso_morphic to square

One of the main results in our early 1980s work on piecewise-linear algebra provided a
classification of PL sets under isomorphism. The critical step in this classification is to associate
to each PL set X a “label” with the property that two spaces X and Y are isomorphic if and
only if their labels are related in a certain manner. (By analogy, two finite-dimensional real
vector spaces are linearly isomorphic if and only if their dimensions are the same, i.e., letting
the “label” be the dimension, if their labels coincide. But in the PL case, single integers
do not suffice as “labels”.) Labels are, by definition, polynomials in two variables z,y with
non-negative integer coefficients. We let N[z, y] denote the collection of all such polynomials.
Examples of labels are 1, z, v, z3, 1+ zy + 22, etc. We interpret the sum in N[z, y] as union of
disjoint sets and the product as Cartesian product of sets, the unit 1 as a one-element set, the
variable z as the open interval (0,1), and the variable y as the half-line (0, +oc0). Thus, z3 is
an open cube, and 1+ zy + z? is the union of a point, a disjoint set (0,1) x (0, +-00), and a unit
square disjoint from both. One may decompose any PL set into a finite union (algebraically,
a sum) of objects each of which is linearly isomorphic to a monomial in z and y. (Simplicial
decompositions provide a way to do this.) In this manner, a label (nonunique) can be associated
to each PL set.

Certain formal equalities are easy to establish. Splitting the interval z as

0,1) = (0,1/2) J{1/2} U @/2,1),




and then using affine maps (¢ — 2t and ¢ — 2t—1 respectively) to map the first and last interval
to z, we obtain “z = 2z+1”. On the other hand, the split y = (0, +o0) = (0,1) U{1} U(1, +00)
(and t + t — 1 applied to the last set) gives us the identity “y = z + 1 +¢”. Drawing a
bisecting line through the first quadrant in R? gives “y? = y? + y + 2" (using, e.g., the linear

transformation (t1,%2) = (t1 — t2,12) to send the lower triangle {(t1,t2)|t1 > 0,¢; > t2} to y?).

It was shown in our previous work that these three identities are enough, in the sense that
two sets are isomorphic if and only if their labels can be obtained from each other by using
repeatedly these elementary identities. In other words, isomorphism is precisely determined by
the congruence generated by these identities in the semiring N[z, y]. In this manner, one may ap-
ply to the equivalence problem the results of Eilenberg and Schiitzenberger on finitely generated
commutative monoids that are obtainedd by quotients under such congruences. Equivalence
under congruences is in general non-polynomial time; however, exploiting the special form of
the congruences that define PL equivakence, we were able in [11] to find a polynomial time
algorithm for our problem. Our collaborator on this project, B. Dasgupta, has recently super-
vised a Master’s thesis implementing the algorithm. As mentioned earlier, this is only a first
step in studying equivalence of PL systems, and further work is ongoing.

6 Networks of Spiking Neurons

We have also continued work on a different type of network which represents neural populations,
. based on “spiking neurons” (information is encoded in inter-spike intervals). This biologically
- more reahstlc and appealing class of systems gives rise to a whole new set of questions. Some
;. of our results regarding such models. are outlined next (Let us just add here that we have
- also. ma,de initial progress towards the characterlzatlon of the structure of local minima of.

. ,assomated fitting problems, using a combmatlon of differential topology (Morse theoretlc) logic,.
-and algebralc—geometrlc technlques such as. prev1ously employed in our work on-critical points-
of obJectlve functions involving s1gm01dal networks (Advances in C’omputatzonal Maithematics,
5(1996): 245-268) and the geometry of Banach space techniques from our paper [1], in the
count of minima and the study of approximation rates.)

Experimental data show that biological synapses behave quite differently from the symbolic
synapses in all common artificial neural network models. Biological synapses are dynamic,
i.e., their “weight” changes on a short time scale by several hundred percent in dependence of
the past input to the synapse. In [12], we addressed the question how this inherent synaptic
dynamics — which should not be confused with long term “learning” — affects the computational
power of a neural network. In particular we analyzed computations on temporal and spatio-
temporal patterns, and we gave a complete mathematical characterization of all filters that
can be approximated by feedforward neural networks with dynamic synapses. It turns out
that even with just a single hidden layer such networks can approximate a very rich class of
nonlinear filters: all filters that can be characterized by Volterra series. This result is robust
with regard to various changes in the model for synaptic dynamics. Our characterization result
provideed for all nonlinear filters that are approximable by Volterra series a new complexity
hierarchy which is related to the cost of implementing such filters in neural systems. This set
of results has given rise to several follow-up papers, and has attracted considerable attention in
the theoretical neuroscience community. Let us give some details next.

Synapses in common artificial neural network models are static: the value w; of a synaptic
weight is assumed to change only during “learning”. In contrast to that, the “weight” w;(t) of




a biological synapse at time ¢ is known to be strongly dependent on the inputs z;(t — 7) that
this synapse has received from the presynaptic neuron ¢ at previous time steps ¢t — 7. Several
recent papers have shown that a model of the form

wi(t) = w; - D(t) - (1 + F(t)) (3)

with a constant w;, a depression term D(¢) with values in (0, 1], and a facilitation term F'(t) > 0,
can be fitted remarkably well to experimental data for synaptic dynamics. The facilitation term
F(t) is usually modeled as a linear filter with exponential decay: If z; (t — 7) is the output of
the presynaptic neuron (typically modeled by a sum of d-functions), then the current value of
this facilitation term is of the form

F() = p/ooo zi(t —7)- e Mdr 4)

for certain parameters p,7y > 0 that vary from synapse to synapse. The analysis in our work is
primarily based on this model, but we also showed that our results also hold for the somewhat
more complex models for synaptic dynamics obtained in a mean-field context.

We showed in [12] that such inherent synaptic dynamics empowers neural networks with
a remarkable capability for carrying out computations on temporal patterns (i.e., time series)
and spatio-temporal patterns. This computational mode, where inputs and outputs consist of
temporal patterns or spatio-temporal patterns — rather than static vectors of numbers — appears
to provide a more adequate framework for analyzing computations in biological neural systems.
Furthermore their capability for processing temporal and spatio—temporal patterns in a very
efficient manner may be linked to their superior capabilities for real-time processing of sensory
input, hence our analysis may provide new ideas for designing artificial neural systems with
similar capabilities. : ‘

We considered not just computations of neural systems with a single temporal pattern ‘as:

mput ‘but also characterize their computational power for the case where several different tem- .. .-

poral patterns u1(t), . un(t) are presented in parallel as input to the neural system. Hence
we also provided a complete characterization of the computational power of feedforward neu-
ral systems for the case where salient information is encoded in temporal correlations of firing
activity in different pools of neurons (represented by correlations among the corresponding con-
tinuous functions w1 (t),...,un(t) ). Therefore various informal suggestions for computational
uses of such code can be placed on a rigorous mathematical foundation: It is easy to see that a
large variety of computational operations that respond in a particular manner to correlations
in temporal input patterns define time invariant filters with fading memory, hence they can
in principle be implemented on each of the various kinds of dynamic networks considered in
our work. Previous standard models for computations on temporal patterns in artificial neural
networks are time-delay neural networks (where temporal structure is transformed into spa-
tial structure) and recurrent neural networks, both being based on standard “static” synapses.
Such transformation makes it impossible to let “time represent itself” (in the language of Mead)
in subsequent computations, which tends to result in a loss of computational efficiency. The
results of our work suggest that feedforward neural networks with simple dynamic synapses
provide an attractive alternative.

6.1 More Details

In contrast to the static output of gates in feedforward artificial neural networks, the output
of biological neurons consists of action potentials (“spikes”), i.e., stereotyped events that mark
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certain points in time. These spikes are transmitted by synapses to other neurons, where
they cause changes in the membrane potential that affect the times when these other neurons
fire and thereby emit a spike. Empirical data describes the amplitudes of EPSC’s (excitatory
postsynaptic currents) in a neuron in response to a spike train from a presynaptic neuron.
These two neurons are likely to be connected by multiple synapses, and the resulting EPSC
amplitude can be understood as a population response of these multiple synapses. Therefore
it is justified to employ a deterministic model for synaptic dynamics in spite of the stochastic
nature of synaptic transmission at a single release sit. The EPSC amplitude in response to a
spike is modeled by terms of the form w - (1+ F) and w- D - (1 + F), where F is a linear filter
with impulse response p - e~ 7/7 modeling facilitation and D is some nonlinear filter modeling
depression at synapses. In some versions of the model considered in the literature, this filter
D consists of several depression terms. However it only assumes values > 0 and is always time
invariant and has fading memory.

We analyzed the impact of this synaptic dynamics in the context of common models for
computations in populations of neurons where one can ignore the stochastic aspects of computa-
tion in individual neurons in favor of the deterministic response of pools of neurons that receive
similar input (“population coding” or “space rate coding”). More precisely, we based our neural
network model is based on a mean-field analysis of networks of biological neurons, where pools
P of neurons serve as computational units, whose time-varying firing activity (measured as the
number of neurons in P that fire during a short time interval [t, ¢ + A]) is represented by a
continuous bounded function y(t). In case that pool P receives inputs from m other pools of
neurons Py, ..., Py, we assume that y(t) = o(3212; w;(t)xi(t) + wo), where z;(t) represents the -
7 tlme-varymg ﬁrmg activity .in pool P; and w;(t) represents the time-varying average “weight”

- of the synapses from neurons-in pool .P; to neurons in pool P. (The function ¢ : R — R is:
- _.some “activation function”; for example.o(z) = 1/(1 + e~ *); for the theorems, it sufﬁces to

+assume that o is contlnuou and not a polynomial.) .We allow a general representation of the -

U dynamlbs of sy napses from 2 nonlifiear filter applied toa 'sequence of d-functions (i.e., to a splke Lol

train) to be a nonlinear filter applied to a continuous input function z;(t). Thus, if z;i(t) is'a
continuous function describing the firing activity in the ith presynaptic pool P, of neurons we
model the size of the resulting synaptic input to a subsequent pool P of neurons by terms of
the form w;(2) - z;(¢) with w;(t) := w; - (1 + Fz;(t)) or wi(t) := w; - Dxy(t) - (1 + F;(t)), where
the filters F and D are defined as in previous literature. The first equation that just models
facilitation gives rise to the definition of the class DN of dynamic networks, and the second
equation, that models the more common co-occurrence of facilitation and depression, gives rise
to the definition of the class DN*.

We define the class DN of dynamic networks as the class of arbitrary feedforward networks

consisting of sigmoidal gates that map input functions z1(t), ...,z (t) to a function
m
= () wilt)zi(t) + wo),
i=1
with

wi(t) =w; - (1 + p/ooo z;(t — 7)™/ dr)

for parameters w; € R and p,¥ > 0. o is some “activation function” from R into R , for example
the logistic sigmoid function defined by o(z) = 1/(1 + e™*). We will assume in the following
only that o is continuous and not a polynomial. The slightly different class DN* is defined in
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the same way, except that w;(t) is of the form
oo
wilt) = w; - Dri() - (1 +p / zilt — T)edr),
0

where D is some arbitrary given time invariant fading memory filter with values Dux;(t) €
(0,1]. Thus dynamic networks in DN or DN* are simply feedforward neural networks consisting
of sigmoidal neurons, where static weights w; are replaced by biologically realistic history-
dependent functions w;(t). The input to a dynamic network consists of an arbitrary vector of
functions u; (), ..., un(-). The output of a dynamic network is defined as weighted sum

k
2(t) = ) eyi(t) + o
i=1

of the time-varying outputs ¥ (%), ..., yk(t) of certain sigmoidal neurons in the network, where
the “weights” ag, ..., can be assumed to be static. Thus a dynamic network with n inputs
maps n input functions u; (), ..., un(-) onto some output function z(-).

Networks that operate on temporal patterns map functions of timae onto functions of time.
Let us call these operators filters. We will reserve the letters 7, H, S for filters, and we write Fu
for the function resulting from an application of the filter F to a vector u of functions. Notice
that when we write Fu(t) we mean, of course, (Fu)(t) (that is, the function Fu evaluated at
time t). We write C(A, B) for the class of all continuous functions f : A — B. We will consider
suitable subclasses U C C(A, B) for A C Rk and B C R, and study filters that map U™ into
RR (where R® is the class of all functions from R into R), i.e. filters that map n functions-
u(+),...,un(-) onto another function z(-). Let us focus for simplicity on the case k = 1, i.e. the
case where the input functions u;(-), .. - ,un(+) are functions of a single variable — which we will
interpret- as time. The case k > 1 (spacio-temporal patters) was also studied in our work. .

" A'trivial special case of a filter is the shifting ﬁltér 8y, with Siyu(t) = u{t— t). ‘A arbitrary - -
filter F : U™ — RR is called time invariant if a shift of the input functions by a constant tg
just causes a shift of the output function by the same constant to, i.e., if for any ¢, € R and
any u =< uy,...,Un) € U™ one has that Fuy, (t) = Fu(t — to) where u,; =< Stou1, ..., StoUn)-
All filters considered in our work are time invariant. Note that if U is closed under &, for all
to € R then a time invariant filter F : U™ — R® is fully characterized by the values Fu(0) for
u € U".

Another essential property of filters considered in our work was “fading memory” in the
sense of Boyd and Chua. If a filter F has fading memory then the value of Fu(0) can be
approximated arbitrarily closely by the value of Fu(0) for functions u that approximate the
functions v for sufficiently long bounded intervals [—T},0]. The formal definition is as follows:
a filter F : U™ — R® has fading memory if for every v =< v1,...,v,) € U™ and every € > 0
there exist § > 0 and T > 0 so that |Fu(0) — Fu(0)| < € for all u =< uy,...,up) € U™ with
the property that |lu(t) — u(t)|| < ¢ for all ¢t € [-T,0].

It is obvious that any filter F which can be represented by a sum of finitely many Volterra
terms of any order (i.e., by a Volterra polynomial or finite Volterra series) is time invariant
and has fading memory. This holds for any class U of uniformly bounded input functions u.
Both of these properties are inherited by filters F that can be approximated by some arbitrary
infinite sequence of such filters. This implies that any filter that can be approximated by finite
or infinite Volterra series (which converge in the sense used here) is time invariant and has
fading memory (over any class U of uniformly bounded functions u). Boyd and Chua showed
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in 1985 that under reasonable additional assumptions about U the converse also holds: any
time invariant filter F : U — RR with fading memory can be approximated arbitrarily closely
by Volterra polynomials.

One of our theorems shows that simple filters that only model synaptic facilitation (as
considered in the definition of DN) provide the networks already with sufficient dynamics to
approximate arbitrary given time invariant filters with fading memory. We show that the si-
multaneous occurrence of depression (as in DN*) is not needed for that, but it also does not
hurt. This appears to be of some interest for the analysis of computations in biological neural
systems, since a fairly large variety of different functional roles have already been proposed for
synaptic depression: explaining psychological data on conditioning and reinforcement (Gross-
berg), boundary formation in vision and visual persistence, switching between different neural
codes, and automatic gain control. As a complementation of these conjectured roles for synap-
tic depression, we also proved a theorem which points to a possible functional role for synaptic
facilitation: it empowers even very shallow feedforward neural systems with the capability to
approximate basically any linear or nonlinear filter that appears to be of interest in a biological
context. Furthermore we show that this possible functional role for facilitation can co-exist with
independent other functional roles for synaptic depression: Our result shows that one can first
choose the parameters that control synaptic depression to serve some other purpose, and can
then still choose the parameters that control synaptic facilitation so that the resulting neural
system can approximate any given time invariant filter with fading memory.

Theorem. Assume that U is the class of functions from R into [By, B1]) which satisfy ]u(t) —
u(s)] < By - |t — s for all t,s € R, where By, By, By are arbitrary real-valued constants with .
0 < By < By and 0 < By. Let F be an arbltrary ﬁlter that 1 maps vectors u=< ul, up) €U
into functions from R info R . : IR

Then the followmg are equlvalent‘

(a) F can be apprommated by dynamlc networks S € DN (i.e., for any € > 0 there exists v ...,

some S € DN such that |Fu(t) — Su(t)] < ¢ for all u € U™ and all t € R)

(b) F can be approximated by dynamic networks S € DN with just a single layer of sigmoidal
neurons

(c) F is time invariant and has fading memory

(d) F can be approximated by a sequence of (finite or infinite) Volterra series.

These equivalences remain valid if DN is replaced by DN*.

The following result follows from the above Theorem. It shows that the class of filters
that can be approximated by dynamic networks is very stable with regard to changes in the
definition of a dynamic network.

Corollary. Dynamic networks with just one layer of dynamic synapses and one subsequent
layer of sigmoidal gates can approximate the same class of filters as dynamic networks with
an arbitrary finite number of layers of dynamic synapses and sigmoidal gates. Even with a
sequence of dynamic networks that have an unboundedly growing number of layers one cannot
approximate more filters.

Furthermore if one restricts the synaptic dynamics in the definition of dynamic networks to

oo
the simplest form w;(t) = w; - (1 + p [ z;(t — 7)e~"/7dr) with some arbitrarily fized p > 0 and
0
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time constants 7 from some arbitrarily fized interval [a,b] with 0 < a < b, the resulting class
of dynamic networks can still approximate (with just one layer of sigmoidal neurons) any filter
that can be approximated by a sequence of arbitrary dynamic networks as defined. In the case
of DN* one can either choose to fix p > 0 or one can arbitrarily fix the interval [a,b] for the

value of v.

7 Optimal Control of Hybrid Systems

The problem of optimal control for hybrid systems, mixing continuous and discrete variables,
is recognized as one of the central challenges in the emerging hybrid system area, and work
carried out under this grant resulted in substantial advances. Indeed, the papers [20], [21],
and [22] provided different versions of the Mazimum Principle of optimal control for hybrid
systems, under minimal regularity conditions. In this short summary, we will define the class
of hybrid problems to be considered and then state informally the Maximum Principle, leaving
aside a detailed specification of technical assumptions. (The references given above should be
consulted for all details.) The results in the papers [20], [21], and [22] are stronger than the
usual versions of the finite-dimensional maximum principle. For example, even the theorem for
classical differentials applies to situations where the maps are not of class C', and can fail to
be Lipschitz continuous. The “nonsmooth” result applies to maps that are neither Lipschitz
continuous nor differentiable in the classical sense. From now on, the expression “smooth
manifold”—or, simply, the word “manifold”—means “finite-dimensional Hausdorff manifold of
class C! without boundary.” If M is a manifold, and z € M, then T, M, T;M, TM, T*M
denote, respectively, the tangent and cotangent spaces of M at z, and the tangent and cotangent '
bundles of M. We start with several definitions.

A finite famz/y of state spaces is a pair (Q M) such that'

| FFSS1. Q is a finite set,
FFSS2. M = {M}4cg is a family of smooth manifolds, indexed by Q.

If (Q, M) is a finite family of state spaces, then for each pair (g,q") € Q X Q we use Mgy to
denote the product My X My X7 X T.

A switching constraint for a finite family of state spaces (Q, M) is a family S =
{Sa,q}(a.9)cox o such that Sq o is a subset of Mg g for every pair (g,d) e Qx Q.

The following is the definition of “hybrid control system” that will be adopted for the
purposes here. A hybrid control system is a 6-tuple

= (Q7 M’“’ f’u7 8)
such that
HCS1. (Q, M) is a finite family of state spaces;

HCS2. U = {U,}4eq is a family of sets;

HCS3. f = {f;}qeo is a family such that f, is, for each g, a partially defined map from My x Ugxr
to T My, having the property that f,(z,u,t) belongs to T;M, for every (x,u,t) € My x
Uy x r for which f,(z,u,t) is defined;
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HCS4. U = {U,}4e0 is a family consisting, for each g, of a set U, each of whose members is a
map 7 : Iy — U, defined on some subinterval I, of R;

HCS5. S = {Sy¢}(4.¢)c0x 0 is a switching constraint for (Q, M).

The sets S, o are the switching sets of 3, and are allowed to be empty. One should think of Sq.q

as the set of all 4-tuples (z,2’,¢,t') such that x € My, ' € M, and a switching (or Jump”)
from state x € M, to state 2’ € My is permitted at time ¢, with a resetting of the clock to
time ¢. Usually, one does not want to permit clock resetting, but for mathematical reasons it
is better to allow it in principle, and exclude it, when desired, by just taking the switching sets
Sy,q' to consist only of points of the form (z,z’,t,t).

The members of Q are called locations. The families M, U, are, respectively, the family of
state spaces and the family of control spaces of X. For each g, the manifold M,, the set Uy, the
map fg, and the set U, are, respectively, the state space, the control space, the dynamical law,
and the class of admissible controls at location q. Usually, Q will be the set of states of some
finite automaton.

A control for a hybrid system ¥ as above is a triple ¢ = (q,1,%) such that

® q=(q1,...,qy) is a finite sequence of locations;

o I=(I;,...,1,) is a finite sequence of compact intervals;

®n=(m,-...,n) is a finite sequence such that n; belongs to Uy, and Iy, = I; for j =
I C (q,In) is a eontrdl ‘and I ;.(Il, I ) fory — 1,. » , UV, We ese q(O, I(¢), n(.C)‘,‘ V(C) to
denote, respectlvely, the ﬁmte sequences q, I, n, and the natural number v. If I; = [t;,7;], we :

; " use t(¢), 7(¢) to denote the sequences (t1,...,ty) and (71,. ..,7',,) and we let ac = t, be =7y
Then ac, b, v(¢) -1, and’ q(( ) are, respectlvely, the zmtzal time, the terminal time, the number

n:,

of switchings, and the switching strategy of ¢.

If ¥ = (MU, f,U,S) is a hybrid system as above, ¢ is a control for ¥, and v = v((),
then a pretrajectory for ¢ is a v-tuple £ = (£1,...,£,) such that, if

( ) (I17 ) I _[t.777-.7] q (Qh--"QV)? 77(0=(771y---,77u),

then, for each j € {1,...,v}, §; is an absolutely continuous map from I; to the manifold My,
having the property that fq; (&), m;(t),t) is defined and fj (t) = f£q;(&(t),m;(t),t) for almost
all t € I;.

If ¥ is a hybrid system as above, a pretrajectory-control pair for ¥ is a pair (&, ¢) such that
¢ is a control for 3 and & is a pretrajectory of X for (.

We use PTCP(X) to denote the set of all pretrajectory-control pairs of the system X.

An endpoint constraint for a finite family of state spaces (Q, M) is a family & =
{Eqq'}a.q)ecoxo of sets such that E,  is, for each (g,q') € Q x Q, a subset of Mg

Notice that, mathematically, an endpoint constraint is exactly the same kind of object as
a switching condition. This is why the part of the maximum principle that has to do with the
switchings will have the same form as the transversality condition.

Let ¥ = (Q,M,U, f,U,S) be a hybrid control system as in the previous definitions, and
let £ = (£, () belong to PTCP(Z). Let v =v(¢), &= (&,---,&), a({) =(q1-.-,a),
t(C) =(t1,...,t,,), T(C)= (7‘1,...,T,,), I(C)= (Il,...,I,,), Sz{sq,q'}(q,q’)egxg- Then
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The endpoint condition of § (or of Z) is the 4-tuple

9 % 2% (£,(bc), &1(ac), be, ac) € Mgy,q, - (5)

If 1 < j < v, the “j-th jump” of € (or of Z) is the 4-tuple

0;6 € 0,2 ¥ (£(r3), &1 (ti41), T ti1) € Mgy - (6)

If £ = {E, ¢ }(g,q)coxo is an endpoint constraint for (Q, M), we say that = satisfies the
constraint € if O= belongs to Eg, 4,

We say that £ (or E) satisfies the switching conditions for ¥ if 9;E belongs to Sg; 4,4
whenever j € {1,...,v —1}.

If ¥ = (Q,M,U, f,U,S) is a hybrid system as above, then

e we say that a pretrajectory £ of T is a trajectory of ¥ if £ satisfies the switching conditions
for 3;

e we use TCP(X) to denote the set of all trajectory-control pairs of ¥ (i.e., the set of all
= = (¢,¢) € PTCP(Z) such that £ is a trajectory of X), and TCP(Z;€) to denote the
set of all E € TCP(X) that satisfy the endpoint constraint £.

If ¥ is a hybrid system as above, then a Lagrangian for ¥ is a family L = {Lg}4eq such . -
that : o . T .

o L, is, for each ¢ € Q, a partially defined real-valued function on the product My x Uy xr,. -

- o whenever ¢ € Q, n €U; has domain [, 8], and £ : [o, ] — M, is an absolutely con- :
- tinuous solution of £(t) = f,(£(t),n(t),t) a.e., it follows that the function [a, 3] > t —
L(£(t),n(t),t) is defined for almost every ¢, and is integrable.

A switching cost function for ¥ is a family @ = {®4.¢}(q.9)cox o such that each @4, is an
extended real-valued function on Sg 4 that never takes the value —oo.

An endpoint cost function for T is a family ¢ = {pg,¢ }(g,¢)cox g such that each g is an
extended real-valued function on M, that never takes the value —oo.

If L = {L4}qeo is a Lagrangian for the hybrid control system X, then we can define the
corresponding Lagrangian cost functional Cr, : TCP(X) — r, by letting

Colt) =Y [ Lo (&m0, 00, ™
g=1"1i

where v = V(C)7 I(C) = (Il"" 7I1/)7 q(C) = (q17--'aql/)a 17(0 = (7717“- anv)7 and £ =
(1,5 80)-

If ® is a switching cost function for ¥, and ¢ is an endpoint cost function, then we associate
with ® and ¢ the functional Cg , : TCP(E) — r U {+oo} that assigns to each E = (£,¢) €
TCP(X) the number

v—1
C<I>,tp(€a ¢) = P (02) + Z (I)‘Ij»Qj+1 (ajE’) ) (8)
j=1
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where v = v((), and (q1,...,qy) is the switching strategy of (.

A hybrid Bolza cost functional for ¥ is an extended real-valued functional C : TCP(X) —
7 U {+00} such that C = Cr, + Cs o for some L, ®, ¢ that are, respectively, a Lagrangian, a
switching cost function, and an endpoint cost function for ¥.

Given a hybrid control system ¥, a Bolza cost functional C for ¥, and an endpoint constraint
&, we will consider the optimal control problem P(X, C, £), whose objective is to minimize C(£, ¢)
in the class TCP(E &). We observe that the endpoint constraint sets E, ; could all be of the
special form E ¢ % {0} x {a}, where a, b are fixed real numbers, independent of g, ¢’, and each
Eg’q, is a subset of My x My. In that special case, all the members E = (£,() of TCP(X;€)
satisfy a; = a, b; = b, so we have a problem with fized initial and terminal times. In addition,
the switching sets Sy ¢ could be of the form Sy o = S , x {Tg,¢'} X {Tg,¢'}, Where 82 v C Myx My
and the t,  are fixed real numbers, in which case we would be dealing with a problem wzth
fized switching times and no clock resetting.

7.1 The general form of the maximum principle
Let us assume that
Al. £ = (Q,M,U, f,U,S) is a hybrid control system;
A2. C=Cp+ C’q;#P is a hybrid Bolza cost functional for X;
A3. £isan endpoint constrainti for (Q, M);

7 A4E# (the “reference tréjectpr_y—éonfrol pairff<) belbngs_ to TCP(X;£), and.

== (ghoh), = @ €,
I# = (I# #) o ot = (77#,---,77,,#)~

The mazimum principle gives a necessary condition for =# to be a solution of P(E,C,E). The
result only depends on comparing trajectories with the same switching strategy, and does not
require the candidate arc Z# to be a true solution. Moreover, even within the class of arcs
corresponding to a fixed switching strategy, only arcs that are close to Z# are compared with
E#. So we introduce the following definition.

A local solution of a problem P(X,C,€) is a trajectory-control pair Z# = (§# *) =
({1 ,- ,{U#, ¢#) such that there exist neighborhoods NV, .. ., N, % of the graphs of §1 , ,§#
in Mq1 Xr...,M a3 xr having the property that £# minimizes the cost C(E) in the class of
all the trajectory-control pairs E = (§,¢) = (&1,-..,&,¢) € TCP(X, ) such that q(¢) = ((#)

(so that, in particular, v = v#) and the graph G(&;) of &; is contained in Nj for j = 1,.
(Here the “graph” of ¢; is the set

G(&)Z{(&(#), ) : t € Domain(&y)}, (9)
so G(&;) C My, xr.)

We now present the maximum principle for hybrid systems as a true “principle,” that is, a
not very precise mathematical statement that can be rendered precise in various ways, giving
rise to different “versions” of the principle. Two such versions—both completely precise and
rigorous—are stated in the papers [20], [21], and [22].
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The maximum principle. Assume that A1-A4 hold, and E# is a local solution of P(Z,C,E&).
Then there ezists an adjoint pair (Y,o) along E# that satisfies the weak Hamiltonian mazi-
mization, nontriviality, and transversality conditions for P(X,C,£) along =7,

To turn the above statement into a theorem, we have to specify technical assumptions on
the 12-tuple of data (Q, M, U, f,U,S, L, ®,p,E,€#* (#), and assign a precise meaning to the
notions of “adjoint pair,” “weak Hamiltonian maximization,” “nontriviality,” and “transversal-
ity.” This is done in the above papers.
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